\(\int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx\) [604]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 534 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=-\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\sqrt {a} \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d} \]

[Out]

1/2*(a^3*(A-B)-3*a*b^2*(A-B)+3*a^2*b*(A+B)-b^3*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^3/d*2^(1/2
)+1/2*(a^3*(A-B)-3*a*b^2*(A-B)+3*a^2*b*(A+B)-b^3*(A+B))*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^3/d*2^(1/
2)+1/4*(3*a^2*b*(A-B)-b^3*(A-B)-a^3*(A+B)+3*a*b^2*(A+B))*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^3
/d*2^(1/2)-1/4*(3*a^2*b*(A-B)-b^3*(A-B)-a^3*(A+B)+3*a*b^2*(A+B))*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^
2+b^2)^3/d*2^(1/2)-1/4*(A*a^4*b+18*A*a^2*b^3-15*A*b^5+3*B*a^5+6*B*a^3*b^2+35*B*a*b^4)*arctan(a^(1/2)*cot(d*x+c
)^(1/2)/b^(1/2))*a^(1/2)/b^(5/2)/(a^2+b^2)^3/d+1/2*a*(A*b-B*a)*cot(d*x+c)^(1/2)/b/(a^2+b^2)/d/(b+a*cot(d*x+c))
^2-1/4*a*(A*a^2*b-7*A*b^3+3*B*a^3+11*B*a*b^2)*cot(d*x+c)^(1/2)/b^2/(a^2+b^2)^2/d/(b+a*cot(d*x+c))

Rubi [A] (verified)

Time = 1.54 (sec) , antiderivative size = 534, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3662, 3690, 3730, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)^2}-\frac {\left (a^3 (A-B)+3 a^2 b (A+B)-3 a b^2 (A-B)-b^3 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )^3}+\frac {\left (a^3 (A-B)+3 a^2 b (A+B)-3 a b^2 (A-B)-b^3 (A+B)\right ) \arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )^3}-\frac {a \left (3 a^3 B+a^2 A b+11 a b^2 B-7 A b^3\right ) \sqrt {\cot (c+d x)}}{4 b^2 d \left (a^2+b^2\right )^2 (a \cot (c+d x)+b)}+\frac {\left (-\left (a^3 (A+B)\right )+3 a^2 b (A-B)+3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^3}-\frac {\left (-\left (a^3 (A+B)\right )+3 a^2 b (A-B)+3 a b^2 (A+B)-b^3 (A-B)\right ) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^3}-\frac {\sqrt {a} \left (3 a^5 B+a^4 A b+6 a^3 b^2 B+18 a^2 A b^3+35 a b^4 B-15 A b^5\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{5/2} d \left (a^2+b^2\right )^3} \]

[In]

Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3),x]

[Out]

-(((a^3*(A - B) - 3*a*b^2*(A - B) + 3*a^2*b*(A + B) - b^3*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sq
rt[2]*(a^2 + b^2)^3*d)) + ((a^3*(A - B) - 3*a*b^2*(A - B) + 3*a^2*b*(A + B) - b^3*(A + B))*ArcTan[1 + Sqrt[2]*
Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^3*d) - (Sqrt[a]*(a^4*A*b + 18*a^2*A*b^3 - 15*A*b^5 + 3*a^5*B + 6*a^3
*b^2*B + 35*a*b^4*B)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(4*b^(5/2)*(a^2 + b^2)^3*d) + (a*(A*b - a*B
)*Sqrt[Cot[c + d*x]])/(2*b*(a^2 + b^2)*d*(b + a*Cot[c + d*x])^2) - (a*(a^2*A*b - 7*A*b^3 + 3*a^3*B + 11*a*b^2*
B)*Sqrt[Cot[c + d*x]])/(4*b^2*(a^2 + b^2)^2*d*(b + a*Cot[c + d*x])) + ((3*a^2*b*(A - B) - b^3*(A - B) - a^3*(A
 + B) + 3*a*b^2*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)^3*d) - ((3
*a^2*b*(A - B) - b^3*(A - B) - a^3*(A + B) + 3*a*b^2*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x
]])/(2*Sqrt[2]*(a^2 + b^2)^3*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3662

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3690

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
 + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \cot (c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))^3} \, dx \\ & = \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {\int \frac {\frac {1}{2} \left (-a A b-3 a^2 B-4 b^2 B\right )-2 b (A b-a B) \cot (c+d x)+\frac {3}{2} a (A b-a B) \cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))^2} \, dx}{2 b \left (a^2+b^2\right )} \\ & = \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\int \frac {\frac {1}{4} \left (a^3 A b+9 a A b^3+3 a^4 B+3 a^2 b^2 B+8 b^4 B\right )-2 b^2 \left (a^2 A-A b^2+2 a b B\right ) \cot (c+d x)+\frac {1}{4} a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{2 b^2 \left (a^2+b^2\right )^2} \\ & = \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\int \frac {-2 b^2 \left (a^3 A-3 a A b^2+3 a^2 b B-b^3 B\right )-2 b^2 \left (3 a^2 A b-A b^3-a^3 B+3 a b^2 B\right ) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx}{2 b^2 \left (a^2+b^2\right )^3}+\frac {\left (a \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right )\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{8 b^2 \left (a^2+b^2\right )^3} \\ & = \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\text {Subst}\left (\int \frac {2 b^2 \left (a^3 A-3 a A b^2+3 a^2 b B-b^3 B\right )+2 b^2 \left (3 a^2 A b-A b^3-a^3 B+3 a b^2 B\right ) x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{b^2 \left (a^2+b^2\right )^3 d}+\frac {\left (a \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{8 b^2 \left (a^2+b^2\right )^3 d} \\ & = \frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}-\frac {\left (a \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right )\right ) \text {Subst}\left (\int \frac {1}{b+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{4 b^2 \left (a^2+b^2\right )^3 d}-\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right )^3 d} \\ & = -\frac {\sqrt {a} \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^3 d} \\ & = -\frac {\sqrt {a} \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d} \\ & = -\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}+\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\sqrt {a} \left (a^4 A b+18 a^2 A b^3-15 A b^5+3 a^5 B+6 a^3 b^2 B+35 a b^4 B\right ) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{4 b^{5/2} \left (a^2+b^2\right )^3 d}+\frac {a (A b-a B) \sqrt {\cot (c+d x)}}{2 b \left (a^2+b^2\right ) d (b+a \cot (c+d x))^2}-\frac {a \left (a^2 A b-7 A b^3+3 a^3 B+11 a b^2 B\right ) \sqrt {\cot (c+d x)}}{4 b^2 \left (a^2+b^2\right )^2 d (b+a \cot (c+d x))}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d}-\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.53 (sec) , antiderivative size = 610, normalized size of antiderivative = 1.14 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\frac {2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\frac {\left (a^3 (A-B)-3 a b^2 (A-B)+3 a^2 b (A+B)-b^3 (A+B)\right ) \left (\sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )}{4 \left (a^2+b^2\right )^3}-\frac {3 \sqrt {a} (A b-a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{8 b^{5/2} \left (a^2+b^2\right )}+\frac {\sqrt {a} \left (a^2 A b+3 A b^3-2 a^3 B-4 a b^2 B\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{2 b^{5/2} \left (a^2+b^2\right )^2}+\frac {\sqrt {a} \left (a^2 A b^3-3 A b^5+a^5 B+3 a^3 b^2 B+6 a b^4 B\right ) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{b^{5/2} \left (a^2+b^2\right )^3}+\frac {\left (3 a^2 b (A-B)-b^3 (A-B)-a^3 (A+B)+3 a b^2 (A+B)\right ) \left (\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )}{8 \left (a^2+b^2\right )^3}-\frac {a^2 (A b-a B) \sqrt {\tan (c+d x)}}{4 b^2 \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}-\frac {3 a (A b-a B) \sqrt {\tan (c+d x)}}{8 b^2 \left (a^2+b^2\right ) (a+b \tan (c+d x))}+\frac {a \left (a^2 A b+3 A b^3-2 a^3 B-4 a b^2 B\right ) \sqrt {\tan (c+d x)}}{2 b^2 \left (a^2+b^2\right )^2 (a+b \tan (c+d x))}\right )}{d} \]

[In]

Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3),x]

[Out]

(2*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((a^3*(A - B) - 3*a*b^2*(A - B) + 3*a^2*b*(A + B) - b^3*(A + B))*(Sq
rt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]))/(4*(a^2 + b^2)
^3) - (3*Sqrt[a]*(A*b - a*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(8*b^(5/2)*(a^2 + b^2)) + (Sqrt[a]*
(a^2*A*b + 3*A*b^3 - 2*a^3*B - 4*a*b^2*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(2*b^(5/2)*(a^2 + b^2)
^2) + (Sqrt[a]*(a^2*A*b^3 - 3*A*b^5 + a^5*B + 3*a^3*b^2*B + 6*a*b^4*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqr
t[a]])/(b^(5/2)*(a^2 + b^2)^3) + ((3*a^2*b*(A - B) - b^3*(A - B) - a^3*(A + B) + 3*a*b^2*(A + B))*(Sqrt[2]*Log
[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]))
/(8*(a^2 + b^2)^3) - (a^2*(A*b - a*B)*Sqrt[Tan[c + d*x]])/(4*b^2*(a^2 + b^2)*(a + b*Tan[c + d*x])^2) - (3*a*(A
*b - a*B)*Sqrt[Tan[c + d*x]])/(8*b^2*(a^2 + b^2)*(a + b*Tan[c + d*x])) + (a*(a^2*A*b + 3*A*b^3 - 2*a^3*B - 4*a
*b^2*B)*Sqrt[Tan[c + d*x]])/(2*b^2*(a^2 + b^2)^2*(a + b*Tan[c + d*x]))))/d

Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 451, normalized size of antiderivative = 0.84

method result size
derivativedivides \(\frac {-\frac {2 a \left (\frac {\frac {a \left (A \,a^{4} b -6 A \,a^{2} b^{3}-7 A \,b^{5}+3 B \,a^{5}+14 B \,a^{3} b^{2}+11 B a \,b^{4}\right ) \cot \left (d x +c \right )^{\frac {3}{2}}}{8 b^{2}}-\frac {\left (A \,a^{4} b +10 A \,a^{2} b^{3}+9 A \,b^{5}-5 B \,a^{5}-18 B \,a^{3} b^{2}-13 B a \,b^{4}\right ) \sqrt {\cot \left (d x +c \right )}}{8 b}}{\left (b +a \cot \left (d x +c \right )\right )^{2}}+\frac {\left (A \,a^{4} b +18 A \,a^{2} b^{3}-15 A \,b^{5}+3 B \,a^{5}+6 B \,a^{3} b^{2}+35 B a \,b^{4}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{8 b^{2} \sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right )^{3}}-\frac {2 \left (\frac {\left (-A \,a^{3}+3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-3 A \,a^{2} b +A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{3}}}{d}\) \(451\)
default \(\frac {-\frac {2 a \left (\frac {\frac {a \left (A \,a^{4} b -6 A \,a^{2} b^{3}-7 A \,b^{5}+3 B \,a^{5}+14 B \,a^{3} b^{2}+11 B a \,b^{4}\right ) \cot \left (d x +c \right )^{\frac {3}{2}}}{8 b^{2}}-\frac {\left (A \,a^{4} b +10 A \,a^{2} b^{3}+9 A \,b^{5}-5 B \,a^{5}-18 B \,a^{3} b^{2}-13 B a \,b^{4}\right ) \sqrt {\cot \left (d x +c \right )}}{8 b}}{\left (b +a \cot \left (d x +c \right )\right )^{2}}+\frac {\left (A \,a^{4} b +18 A \,a^{2} b^{3}-15 A \,b^{5}+3 B \,a^{5}+6 B \,a^{3} b^{2}+35 B a \,b^{4}\right ) \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{8 b^{2} \sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right )^{3}}-\frac {2 \left (\frac {\left (-A \,a^{3}+3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-3 A \,a^{2} b +A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{\left (a^{2}+b^{2}\right )^{3}}}{d}\) \(451\)

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*a/(a^2+b^2)^3*((1/8*a*(A*a^4*b-6*A*a^2*b^3-7*A*b^5+3*B*a^5+14*B*a^3*b^2+11*B*a*b^4)/b^2*cot(d*x+c)^(3/
2)-1/8*(A*a^4*b+10*A*a^2*b^3+9*A*b^5-5*B*a^5-18*B*a^3*b^2-13*B*a*b^4)/b*cot(d*x+c)^(1/2))/(b+a*cot(d*x+c))^2+1
/8*(A*a^4*b+18*A*a^2*b^3-15*A*b^5+3*B*a^5+6*B*a^3*b^2+35*B*a*b^4)/b^2/(a*b)^(1/2)*arctan(a*cot(d*x+c)^(1/2)/(a
*b)^(1/2)))-2/(a^2+b^2)^3*(1/8*(-A*a^3+3*A*a*b^2-3*B*a^2*b+B*b^3)*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)
^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(
d*x+c)^(1/2)))+1/8*(-3*A*a^2*b+A*b^3+B*a^3-3*B*a*b^2)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+c
ot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)
))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8923 vs. \(2 (482) = 964\).

Time = 106.83 (sec) , antiderivative size = 17872, normalized size of antiderivative = 33.47 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

Too large to include

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(5/2)/(a+b*tan(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 556, normalized size of antiderivative = 1.04 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=-\frac {\frac {{\left (3 \, B a^{6} + A a^{5} b + 6 \, B a^{4} b^{2} + 18 \, A a^{3} b^{3} + 35 \, B a^{2} b^{4} - 15 \, A a b^{5}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{3} + 3 \, {\left (A + B\right )} a^{2} b - 3 \, {\left (A - B\right )} a b^{2} - {\left (A + B\right )} b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{3} + 3 \, {\left (A + B\right )} a^{2} b - 3 \, {\left (A - B\right )} a b^{2} - {\left (A + B\right )} b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left ({\left (A + B\right )} a^{3} - 3 \, {\left (A - B\right )} a^{2} b - 3 \, {\left (A + B\right )} a b^{2} + {\left (A - B\right )} b^{3}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left ({\left (A + B\right )} a^{3} - 3 \, {\left (A - B\right )} a^{2} b - 3 \, {\left (A + B\right )} a b^{2} + {\left (A - B\right )} b^{3}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {\frac {5 \, B a^{4} b - A a^{3} b^{2} + 13 \, B a^{2} b^{3} - 9 \, A a b^{4}}{\sqrt {\tan \left (d x + c\right )}} + \frac {3 \, B a^{5} + A a^{4} b + 11 \, B a^{3} b^{2} - 7 \, A a^{2} b^{3}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{a^{4} b^{4} + 2 \, a^{2} b^{6} + b^{8} + \frac {2 \, {\left (a^{5} b^{3} + 2 \, a^{3} b^{5} + a b^{7}\right )}}{\tan \left (d x + c\right )} + \frac {a^{6} b^{2} + 2 \, a^{4} b^{4} + a^{2} b^{6}}{\tan \left (d x + c\right )^{2}}}}{4 \, d} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/4*((3*B*a^6 + A*a^5*b + 6*B*a^4*b^2 + 18*A*a^3*b^3 + 35*B*a^2*b^4 - 15*A*a*b^5)*arctan(a/(sqrt(a*b)*sqrt(ta
n(d*x + c))))/((a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*sqrt(a*b)) - (2*sqrt(2)*((A - B)*a^3 + 3*(A + B)*a^2*b
- 3*(A - B)*a*b^2 - (A + B)*b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*((A - B)*a^3
 + 3*(A + B)*a^2*b - 3*(A - B)*a*b^2 - (A + B)*b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + sq
rt(2)*((A + B)*a^3 - 3*(A - B)*a^2*b - 3*(A + B)*a*b^2 + (A - B)*b^3)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d
*x + c) + 1) - sqrt(2)*((A + B)*a^3 - 3*(A - B)*a^2*b - 3*(A + B)*a*b^2 + (A - B)*b^3)*log(-sqrt(2)/sqrt(tan(d
*x + c)) + 1/tan(d*x + c) + 1))/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + ((5*B*a^4*b - A*a^3*b^2 + 13*B*a^2*b^3 -
 9*A*a*b^4)/sqrt(tan(d*x + c)) + (3*B*a^5 + A*a^4*b + 11*B*a^3*b^2 - 7*A*a^2*b^3)/tan(d*x + c)^(3/2))/(a^4*b^4
 + 2*a^2*b^6 + b^8 + 2*(a^5*b^3 + 2*a^3*b^5 + a*b^7)/tan(d*x + c) + (a^6*b^2 + 2*a^4*b^4 + a^2*b^6)/tan(d*x +
c)^2))/d

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int((A + B*tan(c + d*x))/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3),x)

[Out]

int((A + B*tan(c + d*x))/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3), x)